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Abstract This paper proposes the exploitation of simulation techniques to
evaluate energy optimization strategies in smart micro-grids. In particular,
a container based deployment approach allows for running simulations in
the Cloud, evaluating multiple scenarios and optimization algorithms. Here
we present both the simulator technology and an original two-phases opti-
mization algorithm that computes a sub-optimal solution in real time. We
introduce a simple scenario with real data.

1 Introduction

Two of the greatest environmental concerns are pollution and CO2 Emissions
due to vehicles. Use electrical vehicles could the solution of both these prob-
lems. However, when EVs are charged at home and, even sometimes, when
the charging takes place at public or commercial Charging stations, they start
to stress the electrical distribution network. On the other hand, Smart Grids
have the potential to consider EVs not only as a load, but also as a flexible
power source. Smart meters can provide information to carry out an optimal
schedule to optimize the available power in the grid. A comparable research
study, performed in Portugal, reveals a positive correlation between charging
of electric vehicle and solar power [6].

The spread of IoT technologies provides real time data that can be ex-
ploited for developing smart solutions, to improve energy utilization in micro-
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grids. The GreenCharge project provides innovative cities with technological
solutions and business models for cost-effective implementation and manage-
ment of charging infrastructures for electric vehicles in smart micro-grids[7].
GreenCharge is testing its innovative solutions in practical trials in Barcelona,
Bremen and Oslo. Simulation will be used in the GreenCharge Evaluation
Loop to operate the measures in a virtual environment where the Pilots can
be extended, overcoming real limitations, and the measures can be easily
complemented with missing functionalities[4].

This contribution focuses on the design and implementation of an optimal
loads scheduler that exploits charging flexibility of electric vehicles and the
potential vehicle to grid capability. The objective of the optimal schedule is
to maximize the utilization of energy production by decentralized renewable
energy sources and to reduce the power peak. The optimization techniques
exploits the load shifting and the control of power level of charged EVs. A
software simulator, developed within the activities of the GreenCharge H2020
research project, is used for the experimental activities. Here we present the
container based architecture of the simulator and a simple case study that
uses real data to reproduce a realistic scenario.

2 The Greencharge Simulator

The GreenCharge simulator reproduces in a virtual environment the events
that occur in a real pilot using a collection of real misured data [3]. It is
based on the original CoSSMic simulator [1], and allows to extend the eval-
uation capability in real pilots, which are limited in the heterogeneity and
number of devices and in the duration of operating trials. The simulator is
based on the discrete-event simulation (DES) model where the system ap-
pears as a discrete sequence of events in time [2]. In Fig. 1 the conceptual
model of the container based deployment configuration of the GreenCharge
simulator is shown. Using both a virtual or a real network many containerized
components interoperate trough a loosely coupled integration. The blue boxes
represent the simulation engine and its Graphical User Interface (GUI). They
use a volume to access simulation input and output data such as the config-
uration of scenarios, input time-series and output results. The XMPP server
provides a peer-to-peer communication overlay for multi-agents distributed
implementation. A volume is used to save user-credentials, since the simula-
tor can be used by multiple users who can run their simulations in parallel,
in one or in multiple containers. An optimization model can be integrated as
Energy Management Systems (EMS) that runs in its own container and uses
the Simulator interface to receive simulation events and to return the optimal
energy schedule. The GreenCharge project will evaluate two different EMS
innovative technological solutions, developed by the University of Oslo and
by the Eurecat partner. Here we investigate an alternative solution that is



Fig. 1: Container based deployment configuration of GreenCharge Simulator

used to demonstrate how the simulation platform works. The user can access
the Simulator GUI by the web interface of the hosting container.

In Fig. 2 the GreenCharge Simulator Graphic User Interface (GUI) is
shown. The Control Panel represents a kind of dashboard of the tool to set

Fig. 2: Simulator GUI

and overlook a simulation session. In this panel, after completing the config-
uration phase, we can set the day and the starting time of the simulation.
Pressing the start button activates all the simulation agents and starts the
scheduling process. As the simulation progresses over time, the actual simu-
lation time is updated, allowing the user to keep track of its evolution. The
simulation scenario is described by two XML files. The neighborhood.xml
file describes the static configuration of the micro-grid, that means the list
of device with their parameters and the topology of their connections. The
loads.xml file defines the events which will occur during the simulation, such
as the start of an EV charge session, the booking of a charge point, the update
of prediction of PV energy production, or the planned utilization of a heating-
cooling device. The inputs include a list of time-series which correspond to



the energy profile of devices such as washing-machines or production profile
of photo-voltaic panels. The output include a log of the messages exchanged
between the EMS and the simulation engine. The remaining results consist
of time-series directly uploaded by the EMS or computed by the simulator
according to the schedule received from EMS.

3 Formulating the Energy Management Problem

Self-consumption can be defined as the share of total photovoltaic production
consumed directly by the owner of the plant [5]. In Fig. 3, areas A and B

Fig. 3: Self Consumption

correspond to the interaction with the electricity grid in terms of demand and
generation, respectively. Area A corresponds to the power absorbed from the
electricity network by a building. Area B corresponds to the injection into the
electricity grid of the surplus power produced by the photovoltaic system. The
overlapping parts, i.e. area C, correspond to the power used directly inside
the building. This area is sometimes referred to with the term of absolute
self-consumption, but what is usually meant by the term self-consumption
is the self-consumed part relating to total production. The increase in self-
consumption may provide greater profits of the plants and may decrease the
pressure on the electricity distribution network (Grid).

Therefore, the goal of an energy management system here is to find an op-
timal schedule of energy loads, that maximizes the self-consumption, without
violating constraints set by the users about the earliest start time and the
latest start time of the appliances. Example of shiftable loads are the ones
generated by a washing-machine or a dishwasher.



The formulation of the complete optimization problem, taking into account
energy producers, energy consumers and available stotage batteries, aims to
maximize the ratio between ECres and EPres, where ECres is the renewable
energy consumed in the neighborhood and EPres represents the renewable
energy produced. Maximizing this ratio is equivalent to minimizing the energy
drained from the grid and the energy exported from the panel to the grid.

Moreover, assuming that storage can either provide or drain energy at one
time, and that max charging power is equal to max discharging power, the
discrete minimization problem is formulated in Equation 1 .

min
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n=0

(∣∣∣∣ I∑
i=0

P i
res(n∆t)−
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j=0
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+
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This formula is valid if and only if the storage can only accumulate the
energy produced by the local renewable energy sources. In particular:

� N i the number of discrete time intervals
� I is the number of Producers
� J is the number of Appliances
� K is the number of energy Storage
� P i

res(n∆t): is the power produced by i-th renewable source at time n∆t
� Cj

con(n∆t): is the power consumed by j-th appliance at time n∆t
� xn,k ∗PMAXk

storage: power provided by k-th energy storage at time n∆t.

We also suppose that J1 appliance generates shiftable loads, while loads
of J2 appliance cannot be shifted, such as lights, tv and any other devices
that are not monitored and controlled. All these devices represent a back-
ground load that can be subtracted to the available renewable production.
In Equation 2 we split the contribution of shiftable and not shiftable loads.

J∑
j=0

Cj
con(n∆t)) =

J1∑
j1=0

Cj1
Back(n∆t)) +

J2∑
j2=0

Cj2
Sh(tj20 , n∆t)) (2)

with J1+J2 = J . In order to simplify the problem, looking for a sub-optimal
solution, we propose to address the optimization problem in two steps. First
we find the schedule for shiftable loads, than we try to shift and modulate
the charging of energy storages.

The first optimization problem is formulated in Equation 3.
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Hence, here we aim at finding the best set of starting times (~t0) of the shiftable
loads that maximizes the self-consumption with tj20 between the earliest start

time tj2est and the latest start time tj2lst. Once the start time of shiftable loads
has been assigned we deal with the optimal charging/discharging of the stor-
ages. In particular, we address this problem as a linear minimization problem
every ∆t seconds. In Equation 4, Rres(n∆t) represents the Residual power
in the nth time interval, while the kth x is the real decision variable for each
storage. If xk > 0 in the nth interval, it means that the storage k will charge
in that in interval, it will discharge otherwise.

min
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4 Optimization Algorithm

The optimization algorithm works in two phases. In a first phase a Genetic
Algorithm is used to find the start time for the load shift. In a second phase
a many linear optimization problems are solved, one for each time slot within
which the power value of charging EVs is kept constant.

4.1 GA based Load Shifting

To provide results in a defined and certain time, the optimal schedule will
be computed using evolutionary optimization techniques, with the addition
of specialized genetic operators studied for the type of addressed problem.

In our case, we models an individual as a list of start-time of the loads that
must be scheduled. Therefore, the number of genes is variable and depends
on the user’s real-time needs. The same applies to optimization constraints
in terms of load start-time preferences. The less flexible they are, the less
there will be room for optimization, making the response time lower.

The optimum is computed without limits of iterations, but using the
quadratic norm of the population as a stopping criterion. The quadratic norm
(qn) represents an index that measures how much the population is scattered
in the research space.



4.2 Linear EV charge optimization

The linear minimization problem of Equation 4 is solved in 144 time interval
of 10 minutes each. EVs are modeled as stationary storage. Basically it is
possible to use the energy stored in car’s battery whenever possible to supply
power to the loads present within the neighborhood if necessary. Any intervals
where there is not enough self-production to meet the energy demands would
be balanced by the battery energy, thus increasing self-consumption On the
other hand, if an EV k does not support the V2G capability, the xk > 0
constraint will be set.

Other constraints limit the maximum amount of energy that can be
drained from and to the EV energy storage. Such constraints are defined
in Equation 5.

xk∗PMAXk
storage

6 ≤ Et − En if
xk∗PMAXk

storage

6 > 0
xk∗PMAXk

storage

6 ≤ En if
xk∗PMAXk

storage

6 < 0
(5)

Where En is the Energy stored in the EV battery at the nth interval and Et is
the total battery capacity. Consequently, Et−En is the energy that can still
be charged. The previous constraint states that the energy charged within a
ten-minute interval (the sampling step chosen) cannot be greater than the
energy necessary for the complete charge of the battery, on the other hand,
the Energy discharged within a 10 minute interval cannot be greater than the
amount of energy already present in the battery. Moreover, the last constraint
is set to avoid that the power peak in each time interval does not overcome the
physical threshold. Finally, in order to satisfy the EV energy demand before
the departure time, the algorithm dynamically set some xk values before the
linear solver is run. The idea is to leave the car battery free to charge and
discharge freely until the last available timeslot after which it would no longer
be possible to charge the car up to the necessary level in the desired time even
with the maximum charge power. The algorithm, in each time slot, computes
the necessary power value to satisfy the charging demand. If the required
value, divided by the maximum charging power, belongs to [-1,1], it means
that the achievement of the target SoC is still feasible. On the other hand,
to avoid that in the next slot is too late to charge at the desired level even
if the maximum power is used, then a lower threshold is set for deciding to
charge at maximum power in the current interval. Such a threshold value is
set equal to 0.9 in the following experiments. A special case of this algorithm
is when V2G is enabled. In this case the algorithm prevents the usage of V2G
in the i time slot, if it could cause in the i+1 slot that the required power to
achieve the target SoC exceeds the maximum value. Logically this procedure
also affects the optimal result, because we have inhibited the use of V2G in
an slot in advance. Howeve, since the slot duration is only 10 minutes, then
the impact is limited.



5 Experimental results

The simulation scenario includes 2 photo-voltaic plants and 16 dishwasher,
2 washing-machines and three EVs. The power profiles of all devices have
been extracted from real measured data, but, in order to configure a larger
workload, the same device is replicated in the proposed experiment with
random EST and LST constraints, whose difference is no more than one
hour. The PV plants produces 24.9 kWh from 08 : 00 to 18 : 15. The stopping
criterion for computing the theoretical optimum is a value of the quadratic
norm equals to 10−6. It is reached on average in 100 iterations. The average
value of self-consumption has been 59%, that corresponds to an green energy
consumption of 14.7kWh. Fig. 4a shows the optimal schedule compute by the
Genetic Algorithm in a specific run that converged after 81 iterations. In Fig.
4b we see in green the self-consumed energy. It is straightforward to observe
that, because of the constraints, some loads consume from the grid before
the PV plants start to produce. On the other hand the power peak exceed at
the PV power more than once. The blue line corresponds to the PV power
consumption In a second phase the linear optimization computes the optimal

(a) Optimal loads shift (b) Self Consumption

Fig. 4: Optimal schedule after the loads shift.

charge of the three EVs. We considered the real brand and models which have
been monitored in trials: two instance of a VW e-Golf with a 24kWh battery
and a Peugeot iOn with a 16kWh battery. The maximum charge power for
both was limited by the charging point. All the required parameters, including
the arrival and departure time, and the status of charge on arrival and the
target one, are listed in Table 1. In Fig. 5 it is shown a comparison of results,
in terms of self-consumption, with and without V2G support. In Fig. 5a it
is shown that the algorithm is able to consume all the energy produced by
the PV plants, but it cannot reduce the power peak when it needs to charge
the EV to comply with the desired energy level at the departure time. The
stacked power of charging EVs in Fig. 5b try to saturate the PV panel in



Table 1: Input parameters for the EVs charge optimization.

EV Capacity Max Power
Arrival (soc,
time)

Departure

EV1 24 KWh 3.6 kW 50%;10:40 70%;20:40
EV2 24 KWh 3.1 kW 25%;09:20 90%;17:40
EV3 12 KWh 1.8 kW 25%;08:15 85%;16:16

the beginning, but especially EV2 must charge at maximum power before
leaving. This behaviour causes a power peak that is partially compensated
by the PV production. In Fig. 5c the self-consumption is still 100%, but the
algorithm exploits the V2G support to minimize the energy exchange with
grid using the available energy stored in the EV batteries. It can be observed
that there is not power consumed from the grid while the PV is producing.
On the other hand, a higher power peak respect to the the previous case is
due to the necessity to charge EV1. In fact EV1 is the last one to leave and
the one that provides to the grid most of its energy.

(a) Self Consumption without V2G (b) EV stacked power without V2G

(c) Self Consumption with V2G (d) EV stacked power with V2G

Fig. 5: Effects of EV charge on self-consumption with and without V2G.



6 Conclusion

We presented a container based deployment solution for the evaluation of
energy management strategies in smart micro-grid scenarios based on sim-
ulation. The container based approach allows to speed up the evaluation
activities deploying instances of the simulator in a distributed systems, or in
Cloud, and running multiple optimization strategies working on different sce-
narios. We focused on the evaluation of an original optimization algorithm
that aims at maximizing the self-consumption of decentralized PV energy
production in a smart-microgrid, exploiting the flexibility of EV charging,
with and without the support of V2G capability. The experimental results
demonstrates the feasibility of the evaluation approach. Further improve-
ments are required to take into account conflicting goals, such as power peak
minimization and realistic battery models. Investigation on high performance
and scalability issues of the proposed deployment configuration is needed.
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